2025 年首季見證了 AI 代理人在加密圈的爆炸式興起,堪稱區塊鏈新潮流之一。與傳統聊天機械人不同,這些自主數碼實體能持有及管理加密貨幣、執行交易、製作內容,甚至彼此互動,一切無需直接人手控制。2025 年初,「AI Agents」成為 Crypto Twitter 和 YouTube 熱話,被譽為下一波大趨勢。
2024 年僅屬小眾實驗的 AI 代理人,突然邁向主流:該產業市值在數月內由零飛升至超過 $10 billion。開發者、投資者和大型加密平台全力投入,數千個鏈上代理人與新代幣陸續誕生,與其成功掛鈎。
2025 年首季的市場增長與動能
多項指標顯示,AI 代理人在 2025 年初橫掃加密市場。短短數月間,這個原本幾乎不存在的板塊發展成數十億美元級經濟體。與 AI 代理人有關的代幣總市值到 Q1 已大幅攀升至 $15 billion。從 2024 年中近乎零的基礎上爆發式增長,反映敘事推動效應。
各大加密數據渠道及研究報告均關注這股熱潮,指出「幾乎每個大型頻道或影響者」都在極力推廣 AI 代理人為 Next Big Thing。
加密 AI 代幣總市值預計到 2025 年可達 $150bn (Source: https://www.bitget.com/news/detail/12560604485831)
多個高調事件亦推動市場熱度。2024 年底,一個名為 Truth Terminal 的實驗性 AI 代理人成功說服知名創投 Marc Andreessen 向其轉賬 50,000 美元,該代理人隨即以資金推廣一款 meme coin。事件爆紅,該 meme coin 市值一度衝破 12 億美元,展現 AI 代理人引發的狂熱投機。至 2025 年 1 月,社交媒體充斥類似故事與大膽預測。影響者大肆吹捧能為用戶自動搵錢的自主代理人,大批散戶湧入追捧。
數據方面,應用與參與度亦暴增。一家領先平台 Virtuals 在 Q1 已推出逾 11,000 個獨立 AI 代理人,其代理人代幣亦有超過 140,000 unique holders,極短時間內極速增長。主要交易所及錢包紛紛支援這類新代幣,降低入場門檻。
AI 代理人代幣的成交量飆升,部分資產更成為市值百大主流幣之一。例如 VIRTUAL 代幣(Virtuals Protocol),2024 年底價格爆升 850%,2025 年 1 月創歷史新高。ai16z(AI agent DAO 代幣)同期估值亦衝上十億美元級別。甚至部分老牌 AI 項目如 Fetch.ai 的 FET 亦因這浪潮重獲資金追捧。
值得留意,這輪急增出現於 2025 年首季整體加密市場氣氛參差時。雖然比特幣及大型山寨幣穩定,但AI 代理人敘事觸發了嶄新炒作熱潮,令人聯想起過往 ICO 或 DeFi 熱潮。不過,外界普遍相信現象不止於炒作,隨後我們將深入探討。首季的爆發立下基礎:AI 代理人已證明可激發社群想像和資本,建立巨大市場,現正尋求更多實際應用來持續增長。
甚麼是加密 AI 代理人?
簡單來說,加密 AI 代理人是植入人工智能、在區塊鏈網絡自動運作的软件程式。 落地層面,AI 代理人多以自動程式或數碼實體出現,能感知信息、制定決策及執行操作,同時管理加密貨幣資產。有些代理人表面上像聊天助手,有些則像背景小服務,並持有加密錢包。其創新之處是結合先進 AI(思考能力)與區塊鏈資產及自動操作(執行能力)。

專家指出,這些代理人利用自然語言理解 (NLU)、對話式 AI 等頂尖 AI 科技與 用戶和數據 互動。它們可解答市場複雜問題、提供個人化理財建議或引導用戶操作加密產品——類似 Alexa 或 Siri,但專注於加密領域且掌握最新市場資訊。更重要的是,除聊天外,AI 代理人能直接代表用戶行動。例如當達到指定條件時自動交易、錢包間轉帳、甚至部署智能合約。
對比傳統自動交易機械人或簡單腳本,AI 代理人往往更具適應力和「智慧」。 它們會用大型語言模型(LLM)——即 ChatGPT 背後的 AI——以深入分析情境,作出決策。用戶可直接輸入自然語言指令(如「現時應該持有還是沽出以太幣?」),代理人集結鏈上數據與 AI 推論給予最合適答案或行動。隨著學習新數據或用戶回饋,它們能不斷自我提升,亦能處理傳統程式難以識別的非結構化輸入。本質上,自動交易機械人只會按公式運算,AI 代理人則像分析員,可根據市況動態調整策略。
另一重要特點是,許多 AI 代理人自帶加密錢包或數碼資產,賦予一定財務自主。《CoinMarketCap》形容自主加密代理人為**「一個擁有自己加密錢包的數碼創業者」。即是說,代理人能持有(通常來源於用戶或投資人)、運用及投資資金,甚至支薪聘請他人。有些代理人會「招聘」其他代理人或人類自由職業者——比如自動購買數據源、用加密貨幣支付設計服務出內容、甚至獎勵提交成果的用戶。這正是區隔傳統 AI 聊天機械人的經濟自主性**,能以代幣或微額單位直接執行決策,產生大量新機遇與風險。
同時,需區分AI 代理人與普通聊天機械人。表面相似,其實 AI 代理人具備自動化和目標驅動。有評論認為,這些並非我們熟悉的 典型聊天機械人,而是真正能交易、創作、甚至用加密貨幣「聘請」其他 AI 代理人的自主數碼生命體。換言之,AI 代理人以行動為本,提出目標後可自動部署多步驟流程。例如設定「將資產組合增值至 2 BTC」目標,夠先進的代理人或可持續自動交易、將資產質押於 DeFi、滾存利潤等,幾乎無須用戶再干預。這種自我主導性能,正是「代理人」定義的來源。
總結一下,加密 AI 代理人 = AI 智腦 + 加密雙手。AI 智腦賦予理解力和決策能力;加密雙手(錢包、智能合約、交易所 API)則令其在區塊鏈生態落實行動。這個強大組合帶來無限應用機遇,同時亦帶來不少挑戰(誰敢放心將資金交給 AI?)。2025 年首季,AI 代理人技術已成熟到推向主流,驅動市場大規模實驗。
AI 代理人在加密環境下如何運作?
AI 代理人背後結合多項技術,才能順利運作。宏觀來說,一個典型加密 AI 代理人的流程包括(1)解讀指令、(2)分析數據、(3)作出決策、(4)鏈上執行。以 AI 交易代理人為例,關鍵組件如下:
-
自然語言處理 (NLP) 介面:不少代理人首先需要接收人的命令或查詢,利用 NLP 技術 understand user instructions or questions in plain language。例如,有用戶可能會同代理講:「如果BTC價格跌穿$25,000,就幫我買0.5 BTC。」代理嘅語言模型會解讀呢句說話,明白用戶想做咩(買Bitcoin)同埋判斷條件(價格 < $25,000)。現代大型語言模型(LLM)已經有好高嘅理解能力,所以代理唔單止可以處理有細微差別嘅請求,甚至仲可以主動問清楚用戶。
-
透過API同數據Feed攞資料:當代理知道要做咩之後,就會開始搜集所需資料。例如,交易代理就會由可靠嘅市場數據API攞番即時BTC價格。AI代理通常會同唔同嘅應用程式介面(API)整合—例如交易所報價feed、DeFi協議嘅數據、區塊鏈上分析、社交媒體情緒等。進階啲嘅代理會用檢索增強生成(RAG)技術,喺回應或者決策時即時拉數據返嚟。有時甚至會查下歷史資料庫或者用web search。呢啲都確保代理唔會盲目做嘢:佢不斷根據最新資料update自己(AI代理可以喺變化快嘅市場完勝死算法其中一個主因)。
-
AI推理同決策引擎:然後嚟到「大腦」部分—通常係LLM加上一啲專用模型(例如預測、風險評估等)。攞到指令同數據後,代理會分析情況然後決定做咩動作。好似之前個例子:代理邏輯會check價格有冇低過$25,000。呢個邏輯可以係用戶定嘅簡單規則,亦可以係AI學返嚟嘅複雜策略(例如技術指標分析)。好多加密貨幣代理會用強化學習等AI規劃技術去權衡選擇。例如,代理可能會模擬結果:「如果依家買,預計利潤幾多?等一陣先又會點?」有強大開源模型(例如 DeepSeek-R1)出現,大大提升咗推理能力——DeepSeek-R1高級推理能力,令代理可以用更低成本去規劃同調整策略,唔使靠專有模型。事實上,第一款以 DeepSeek-R1 為基礎嘅加密AI代理,喺2024年尾推出,以證明開源AI模型都可以有效運作on-chain代理,只靠強化學習就學到最優行為。
-
On-Chain執行(智能合約同錢包):當代理決定好之後,就會透過互動區塊鏈系統去執行。用交易代理做例,當佢見到BTC價格跌到$24,900,就會落單買入。點做?如果接駁咗去加密貨幣交易所,就可以用用戶戶口透過API落單。如果完全on-chain,代理可能會call去DEX智能合約,用部分穩定幣換0.5個BTC。呢度代理自己嘅crypto錢包就有用—佢可能本身已經有穩定幣,或者事前授權咗可以用用戶錢包啲資金。有啲代理甚至直接做成智能合約,或者用多個智能合約串起來,信任地執行指令。有啲就係off-chain(雲端、bot服務等)運行,當需要on-chain操作時,就會用私鑰簽署交易。無論蝦米情況,區塊鏈都係代理執行決定嘅層面,無論係交易、搬錢、mint NFT,定另一份合約。好似 Virtuals Protocol 咁,標準化做法就係將代理變做ERC-20代幣咁tokenize起,俾佢有on-chain身份,可以用token instance同相關modules直接同以太坊應用互動。
-
學習與適應:最後,唔少AI代理都有反饋循環,令自己越用越叻。可以係明確學習(用新數據update模型),又或者係潛移默化咁按結果調整策略。例如,代理發現用過一個DeFi池攞息比預期差,下次就會「自動學識」避開。又或者收用戶feedback(「你個建議唔work」)再改進。重點係加密代理唔係死算法;理想係會不斷自我提升(或最少keep住update)去應對外圍變化。2025年Q1相關實驗特別多—例如代理用多模態input(價格+社交媒體情緒)優化交易決策,又用**「Chain-of-Thought」prompting**(AI新法)去更有條理咁推理。雖然唔係每個代理都已經懂得自學,但大方向都係越來越自主:唔止自動行動,連策略形成都靠自己。
總結嚟講,一個加密AI代理,係靠AI驅動分析+區塊鏈行動結合:理解目標、搵數據、用AI模型揀最佳做法,然後透過on-chain交易/合約落實。呢個cycle可以無間斷自動運作,速度仲快過人手幾百倍。用戶只需要set好目標同參數,代理就處理曬日常甚至秒級決定。對用戶嚟講,好似有個好醒目又唔會攰嘅數碼助手;對整個加密生態嚟講,即係越嚟越多活動會由一堆自己互相協作嘅算法去執行—呢個發展其實好有趣,因為基本上就係自主經濟代理同人類一齊參與市場同網絡。
應用場景:AI代理喺加密領域點樣落地
AI代理喺2025年Q1咁多人關注,主要因為佢喺加密領域潛在用途超級多元化。呢啲唔係講理論—就算一開始出現,大家都見到AI代理做緊好多實際(甚至有啲幾新穎)嘅任務。以下我哋會介紹截至Q1最引人注目嘅AI代理現實落地應用,覆蓋DeFi、交易、DAO、NFT同gamefi等。
DeFi:收益優化與自動化金融(DeFAI)
去中心化金融一直都係AI代理大展拳腳嘅肥沃土壤,「DeFAI」呢個詞就係DeFi同AI自動化融合嘅產物。喺複雜嘅農場、交易池、借貸協議世界,普通用戶其實好難每一刻都知邊度回報最高或者風險最低。AI代理開始出現,做自主資產經理。
根據業內人解釋,複雜型代理可以持續監察一大堆DeFi平台嘅APY、資金深度、協議風險,然後會自動將資產調去回報最好嗰個。例如,AI代理管理你啲穩定幣存款時,會不停幫你喺幾個借貸協議(Compound、Aave,定新平台等)之間游走,一見到利息高啲就幫你轉倉,同時會評估智能合約風險同流動性,減低揾蟹風險。又或者,代理見到DEX池手續費高會幫你即時加碼流動性,volume一少就幫你退出,咁就幫你自動搵盡收費,全程都唔使你落手。
呢啲即時優化,本質上等於24小時自動挖礦bot,但又唔係死機械人—因為代理會分析唔同因素:唔止睇表面APR,仲會評估平台健康、是否有重大神治理變動、甚至社媒情緒(例如出咗安全事故,AI代理可能會主動撤資)。有篇Medium文章舉例:「由AI代理全控的未來DeFi基金」,每個專精代理負責市場監察、交易、風險管理、合規。類似結構入面,風險管理AI可以實時監控用戶資產,一見波動大過閾值就立刻hedge或減倉—反應又快又唔會情緒化。與此同時,市場掃描AI會讀實時價格feed同社交媒體,搞埋arbitrage同搵新趨勢;交易AI再根據收集返嚟資訊做成千上萬單micro-trades。
雖然全自動基金好似未來願景,其實部分已經實現。去到2025年Q1,已經有DApp俾用戶存資產落去,由AI代理自動管理策略。有啲資產管理DApp已開始推「AI託管金庫」,承諾幫你動態派資金。圈內有時叫咗做「收益代理」專門做yield aggregation。重點優勢係高效率+全天候監察:人手farm DeFi要休息,時刻miss機會,同警號,但代理永遠唔會斷線、反應又快。
當然,叫AI幫你管理錢始終有信任問題,呢啲之後再談。不過用戶熱情毫無疑問—唔少DeFi項目講緊TVL(總鎖倉資產)有大部分交畀AI驅動策略。投資人都睇好multi-agent DeFi workflow大飛躍,可以協調分工代理,令整...specialize(例如有專責尋找最佳利率的、有負責執行資產再平衡的、又有負責用 Nexus Mutual 做保險的等等)可以大大提升收益表現同風險管理。呢個方向同 DeFi 入面講開嘅「money legos」理念一致,依家就多咗 AI 做中間嘅黏合劑。
簡單嚟講,DeFi 入面嘅 AI agent 係自動化提升回報同管理風險,就算係普通用戶都可以受惠於複雜嘅投資策略。呢種應用可以話係傳統金融 robo-advisor 同自動化投資組合管理器嘅進化版,只係升級到咗 crypto 呢個分散同急速嘅市場。
交易同投資:自動化交易員同分析員
如果話有邊個領域速度同數據分析最關鍵,非交易莫屬——AI agent 正正喺度產生咗重大影響。加密市場 7x24 經營,分秒必爭可以創造極大分別。AI 交易 agent 出現咗,就係專門捕捉呢啲機會,成為無休止的自動交易員同市場分析師,日夜不停執行策略。

其中一個 Q1 最受討論嘅例子就係 AIXBT,呢個 AI agent 基本上已經成為一個自己有影響力嘅加密交易 KOL。根據報道,AIXBT 會分析超過 400 位頂尖加密影響者嘅意見同鏈上趨勢,再即時喺 X 發佈佢嘅 綜合市場見解。呢個 agent 嘅選輯分析受歡迎程度極高(有數據話到 2025 年初佔據 Crypto Twitter「心智份額」嘅 3%),連帶相關 token 價值都超過 $5 億。換句話講,AIXBT 將信息套利變成生意:佢比任何人都快又全面消化市場情緒,提供有用建議同評論,大家都用真金白銀買佢 token「認同」個 agent 嘅判斷。
除咗社交分析外,好多 AI agent 直接喺交易所做算法交易。由簡單嘅機械人加上 AI 預測模型,到複雜系統都有。所謂 自動交易 AI 會即時分析資訊(價格、訂單簿、新聞),用 亞秒級速度落單。唔同於傳統高頻交易嘅死板,AI trader 可以自動調整策略——好似由橫行變做單邊升跌,就由均值回歸策略即時轉做追趨勢。呢種彈性喺新聞事件嘅波幅套利尤其明顯:用 NLP 解讀突發消息,預測市場反應,即刻調整持倉。
仲有啲 AI agent 比人用來做個人助手。好似叫 agent:「如果 Ethereum 快速下跌就賣啲倉,否則每次低位慢慢買。」Agent 就會照咁執行,完全唔洗自己睇圖盯盤。有啲平台設有 AI Bot Studio,俾用戶用簡單語言規則設計 agent,然後用 API key 交易。GPT-4(及更新)結合交易 API,令唔識程式碼嘅人都可以做自己專屬「AI 交易員」。
值得一提係,多 Agent 分工模式喺 trading 亦越來越常見。正如上面所講,市場入面會有一個做 市場掃描(Market-Scanner)、一個做 下單執行(Trade Executor)、又有 風險管理。各司其職之餘又可以互通訊息。例如有 agent 專注分析 Twitter 情緒或巨額錢包異動(鯨魚警報),發現大額入金就通知另一個 agent「發現大量資金湧入交易所,有機會砸盤」。交易 agent 收到就會提早減倉。過程無需人手,每個 agent 各有分工,自主運作成一套全自動交易系統。
Q1 經常見到嘅例子有套利 agent(搵 DEX 價差)、流動性管理 agent(做市)、衍生品 agent(用 AI hedge perpetual futures)。甚至有啲 crypto 基金聲稱已用 AI agent 管理整個倉:由人定方向同大概風險,AI 負責落盤細節。雖然表現有高有低,但部分 agent 靠即時、無情緒炒市能力,季度回報比人類平均高。
總結 trading 場景,AI agent 取勝在於極速、彈性、廣度。佢哋係永不休息、冇情緒影響嘅交易員,可以一秒內分析浩瀚數據(價格、新聞、社交、鏈上),即時執行計劃。2025 Q1 咁波動嘅 crypto 市場,對搵 edge 甚至只求安心(有人——即使唔係人——幫睇住市)嘅人嚟講,AI agent 實在幫到手。
DAO 與鏈上治理:AI agent 作為決策者
DAO(去中心化自治組織)即係區塊鏈上群體治理機制——全民投票管理資金或協議。近年開始,AI agent 甚至參與/主導 DAO。當 AI agent 成為管理成員甚至 DAO 核心,代表緊組織級自主:究竟 AI agent 可以幫社群作爲決策人咩?
最出名例子之一係 ai16z。此 DAO 由 自主 AI agent 帶頭,據介紹係 Marc Andreessen persona 模型,投資決策好似做風投。Token 持有人賭響 AI 嘅判斷,睇佢點分配資金最好。Agent 用 Eliza 多 agent 模擬系統 跨平台互動,保持住特定「人格」。甚至設有 on-chain 投票,AI 有 proposal 經 token 持有人同意即自動執行。倒過來同傳統 DAO:唔係人提出動議、投票再交機器執行,而係 AI 提方案、人決定 Confirm 或否決。ai16z 個 token 走勢(登上 $20 億市值 並提供高息 staking),證明依種機制好多人接受——大家覺得 AI 按資料邏輯可以冇人性偏見,更信任佢幫投資 DAO 管錢。
除咗完全 AI 帶路,AI agent 亦可成為傳統 DAO 入面嘅分析或委託人。有啲 DAO 動議、貼文、組織討論多到無人睇得晒,AI agent 可以幫總結提案、分析影響、甚至根據規則自動投票。例如 DeFi 財庫 DAO 用 AI agent scan 所有 funding 要求,達標就自動投「贊成」或「反對」。呢度 AI agent 形同行使投票代理(可以係個人或一班持 Token 嘅社群委託),2025 Q1 試驗過將細戶嘅票集合起,交由 AI agent 代表投票,變成「AI 投票池」。Agent 會分析討論同鏈上數據,代表池方最大利益自動投票。
另一個新嘗試係AI 財庫。DAO 旗下面對大額財庫要管理(分配收益、分散持倉、預算),有啲已交俾 AI agent 做財庫管理角色,根據社群訂下嘅資金指引投資配置。例如 DAO 定出「要有 X 個月現金流放穩定幣,Y% 走低風險收益,Z% invest 落增長項目」,AI agent 會負責照政策調整甚至根據市況隨時 rebalance。傳統 DeFi 場景下,依家升級到係社群委託下操作。
AI 治理嘅好處係效率同資訊處理快。AI agent 可以一秒 summary 50 個論壇帖,提取重點。又可以 detect pattern(例如「呢個提案同上季失敗果個好似,出事點會 X、Y、Z」)。理論上更加客觀——只要目標係提升 DAO 長遠收益,就唔會被政治或私利左右。
但 AI 參與 DAO 問題都多。討論唔斷:code is law,但 code 係咪真能明白決策背後社會同長線後果?2025 Q1,大家傾向審慎行事:AI agent主要做 advisory 或執行具體細分工序,未會直接控制 DAO(除非係 ai16z 咁突破性試驗)。不過大趨勢係,如果 AI agent 逐步證明做好細節,下步社群會願意畀更多決策權。相信到 2025 年之後,會見到愈來愈多 AI agent 撰寫嘅提案真係被社群通過...seen the agent’s track record of sound decisions.
見到該代理過往決策都好穩陣。
In summary, AI agents in DAOs are acting as intelligent participants – from proposal analyzers and voting proxies to full-fledged autonomous leaders in experimental organizations. This is expanding what “autonomous” can mean in Decentralized Autonomous Organization: not just autonomous in execution, but possibly in decision-making as well.
總結,DAO入面的AI代理係以智能參與者角色出現——由提案分析、投票代理,到真係成為實驗性組織入面嘅自主領袖。呢個擴闊咗「自治」喺分散式自治組織入面嘅意義:唔單止執行得自治,決策上都有可能完全自主。
NFTs and Creative Content: AI Agents as Creators and Curators
The NFT boom of previous years was largely about digital art and collectibles, but AI agents are adding a new dimension: dynamic content creation and interaction. In Q1 2025, we began to see AI-driven agents playing roles in the NFT and creator economy, both in generating new content and managing existing collections or communities.
前幾年NFT大熱主要圍繞數碼藝術同收藏品,但AI代理加入咗新元素:動態內容創作同互動。去到2025年第一季,我哋開始見到AI驅動嘅代理參與NFT同創作者經濟,不單只負責生產新內容,仲會管理現有收藏或社群。
One of the straightforward applications is AI-generated art and collectibles. Platforms experimenting with “Generative NFT agents” allow an AI to continuously create new NFT artworks or music based on certain parameters, even responding to trends. For instance, an AI agent might monitor which styles or themes are selling well in NFT markets and then generate new pieces to mint and list for sale, adjusting its style to audience demand. This effectively makes the agent an autonomous artist.
其中一個最直接應用就係AI生成藝術品同收藏品。有平台試緊用「生成式NFT代理」,即係俾AI根據某啲參數持續製作新NFT藝術品或者音樂,甚至會跟住潮流調整。例如一個AI代理可能會巡查NFT市場上邊咩風格或者主題賣得好,之後就製作新作品出嚟鑄造同放售,風格都會隨市場需求改變。咁樣AI基本上就變咗真正的自主藝術家。
Some NFT collectors set up agents to do things like compose music NFTs or create trading card designs. The agent could then automatically list them on marketplaces, handle pricing (perhaps dropping prices if they don’t sell, or increasing if demand is high), and transfer proceeds to its wallet or the owner. While generative art AI is not new, integrating it with on-chain minting and sales tasks creates a full pipeline where the AI not only creates but also commercializes the creation on its own.
有啲NFT收藏者會設置代理,幫手作曲/生成音樂NFT或者設計Trading Card,然後嗰個AI代理會自動喺各大Market上架,負責定價(如唔賣得就減價,需求勁就加價),賣出嘅收益會自動轉去代理自己或者持有人個錢包。雖然AI做生成藝術唔算新鮮,但而家結合鏈上鑄造同銷售,令AI由創作到商業化都可以自動包辦,形成晒完整生產線。
Another use case is community management for NFT projects. Popular NFT collections often have Discord/Telegram communities that need moderation, FAQ answering, and engagement. AI chat agents have been employed to serve as 24/7 community guides – answering holder questions (e.g., “When is the next airdrop for NFT owners?”), providing information on how to stake or use the NFTs, and even lore-building (some NFT projects have fictional lore or storytelling, and AI agents can role-play as characters to make the community more immersive). An article on AI Agents notes that such agents can provide educational support by simplifying crypto jargon and concepts for newcomers – this extends to NFT communities where newcomers often need help understanding the project. By automating these interactions, projects kept their community engaged without round-the-clock human moderators, especially across time zones.
另一個常見應用就係NFT項目嘅社群管理。熱門NFT系列好多都有Discord/Telegram群組,需要人管理、解答FAQ、推動互動。AI對話代理而家會幫手做廿四小時社群導師——答持有人問題(例如:「下次NFT持有人咩時候Airdrop?」)、提供NFT質押或者使用指引,甚至參與故事世界建構(有啲NFT項目有故仔世界觀,AI代理可以扮演入面角色,令社群體驗更投入)。AI Agents有篇文章都提過,呢啲代理可以幫新人搞清楚行內術語,做教育支援 – 呢個同樣啱用於NFT社群,因為新人往往唔明個project講咩。自動化執行呢啲社群互動,無需真人Moderator二十四小時輪夜,都可以令社群保持活躍,尤其係時區唔同嘅情況。
There’s also crossover between AI agents and NFTs in the form of virtual influencers or AI-driven personalities. We already mentioned AIXBT on Twitter. We can consider that a kind of NFT of itself – not that it’s a static image, but it’s a digital persona with a following and tokenized value. Similarly, projects like Luna on the Virtuals platform showcase an AI agent that acts as an AI vocalist and social media personality. Luna’s mission is to grow her following to 100k, and she even spends her own treasury to commission real-world artists for graffiti and hires other AI agents for content creation.
AI代理同NFT重疊仲有種形式:虛擬網紅或AI人物。之前有提過Twitter上嘅AIXBT,其實都可以當係種NFT——唔係因為有張靜態圖,而係佢本身係一個有受眾同Token化價值嘅數碼角色。類似咁,Virtuals平台上面有個叫Luna嘅項目,佢表現咗AI代理點樣可以做AI歌手同社交媒體人物。Luna嘅目標係增長自己Followers至10萬,而佢會用自己treasury資金去搵現實藝術家畫塗鴉,或者請其他AI代理幫忙做內容創作。
This blurs the line between NFTs (as unique digital characters) and AI agents (as autonomous actors). Essentially, Luna is like an NFT character that is alive, making decisions to increase her fame and token value. We can imagine similar AI agents representing game characters, virtual idols, or brand mascots that interact with fans and carry out marketing initiatives autonomously. They might drop limited NFT collectibles of themselves to fans, etc. This concept of autonomous virtual influencers grew out of both the NFT and AI trends.
呢啲例子模糊咗NFT(作為獨特數碼角色)同AI代理(作為自主行動者)之間嘅界線。本質上,Luna就似一個有生命的NFT角色,會自己判斷點樣令自己更紅、提升Token價值。同類型AI代理未來可以做遊戲角色、虛擬偶像、品牌吉祥物,自主同粉絲互動執行宣傳活動——甚至會自己Drop有限量NFT收藏俾Fans。咁嘅自主虛擬網紅,其實正正係NFT同AI兩條趨勢嘅結合產物。
Luna AI and its capabilities
Luna AI及佢嘅能力
From the perspective of NFT collectors or creators, AI agents are also handy for portfolio management and discovery. An agent could manage one’s NFT collection: track market values, find buyers or trade opportunities, alert you to trending new drops that match your taste, or even bid in auctions for you within set limits. Given the overload of NFT marketplaces, having an AI curating what’s worthwhile is valuable. Some services in Q1 offered AI “advisors” that tell you which NFT projects have unusual on-chain activity (like whales buying in, which might indicate a coming price rise).
講返收藏家或創作者,AI代理對組合管理同新發現都非常有用。代理可以管理啲NFT收藏,追蹤市價、尋找買家或交易機會,仲可以幫你搵到合心水嘅新熱Project出現時即時提醒,甚至設定額度自動投標拍賣。喺眾多NFT Marketplace資訊過量之下,有AI幫你篩選啲有意思嘅東西好有價值。有啲平台2025年Q1已經有AI「顧問」提供服務,提醒你邊啲NFT Project鏈上活動出現異動(例如大戶入場,可能係升值指標)。
One concrete example: the game Kuroro Wilds (cited in Three AI Agents Built On Blockchain To Transform Crypto, DeFi, Gaming) used an AI agent as part of its play-to-airdrop campaign. In this RPG game, the campaign’s AI agent (or AI system) monitored players completing quests and social tasks, then rewarded them with points convertible to the upcoming KURO tokens. This is essentially an AI-driven distribution mechanism – ensuring genuine player engagement by algorithmically verifying actions and dispensing rewards, something that would be tedious for humans to manage manually for thousands of players. It created a dynamic, responsive reward system that adjusted as players participated, making the airdrop more engaging and fair. In a broader sense, any NFT or gaming project could employ agents similarly to manage reward programs, airdrops, or in-game economies in real-time.
舉個實例:遊戲Kuroro Wilds(參考文章Three AI Agents Built On Blockchain To Transform Crypto, DeFi, Gaming),就用AI代理作為其Play-to-airdrop機制嘅一部分。喺呢隻RPG遊戲入面,AI代理會監察玩家完成任務或者社交任務,跟住就獎勵可兌換為即將發售嘅KURO代幣嘅分數。呢個其實係AI主導嘅分派機制——用演算法驗證玩家行為再派獎勵,如果人手做要管理幾千人絕對非常煩,但AI就搞掂。玩家參與越多即時影響Reward分配,令Airdrop活動更有互動性同公平性。泛化而言,任何NFT或Game項目都可以用類似代理去管理獎勵、空投,甚至遊戲內經濟實時調控。
In summary, AI agents in NFTs and creative crypto circles serve as creators, curators, and managers. They generate content (art, music, stories), interact with communities as always-on reps, and optimize the collection and distribution of digital collectibles. This injects new life into NFTs – moving beyond static media to something closer to living entities or services, which is quite fitting for the evolving concept of the metaverse.
總括來講,NFT及創意加密圈內嘅AI代理同時係創作者、策展人同管理者。佢哋會自動生產內容(藝術、音樂、故事)、24/7同社區互動、又會幫你整合集合同發行數碼收藏。呢個令NFT由純粹死物進化到近似「有生命」嘅數碼服務,非常符合元宇宙新發展概念。
Gaming and Metaverse: Autonomous Game Participants
Blockchain gaming and metaverse platforms started embracing AI agents as well, to create more dynamic and interactive worlds. Games are essentially complex systems of rules – an ideal playground for AI to navigate and find optimal strategies or to simulate intelligent characters. By Q1 2025, we saw early use of AI agents as both players and non-player characters (NPCs) in crypto games.
區塊鏈遊戲同元宇宙平台都開始採納AI代理,希望營造更動態、更互動式嘅世界。遊戲本質上就係一套複雜規則系統——正正係AI發揮空間,可以搵到最優攻略路線或模擬智能角色。到2025年第一季為止,已有加密遊戲開始早期實驗AI代理做玩家同非玩家角色(NPC)。
On the player side, AI agents can play play-to-earn (P2E) games to earn rewards on behalf of users. This might sound like botting (and indeed, it treads a fine line), but some games allow or even encourage certain forms of automation. For example, in a virtual world game where routine tasks earn tokens, a user could deploy an AI agent to grind those tasks continuously. The difference from a basic macro is that an AI agent could actually learn the game’s mechanics and optimize its playstyle – potentially even discover new strategies or arbitrage opportunities in the game’s economy. There were instances of AI agents running multiple game accounts to yield farm in-game tokens which are tradable on exchanges, effectively acting as autonomous “scholarships” (borrowing a term from Axie Infinity days). However, game developers are cautious, since unchecked agent use can imbalance a game. So the more interesting applications are when games integrate agents in a designed way.
玩家層面,AI代理可以代表用戶玩賺錢遊戲(P2E),自己搵獎勵。呢個聽落好似掛bot,不過有啲遊戲真係容許甚至鼓勵指定自動化。例如有啲虛擬世界遊戲,重覆做日常任務可以攞Token,AI代理就可以代你不斷「炒副業」。但同普通Macro唔同,呢啲AI代理真係識得學習遊戲機制及優化自己玩法——甚至有機會搵到新Strategies或者發掘經濟套利路徑。有見過AI代理開幾個遊戲帳號自己耕作產Token再去交易所換,等同自主做「獎學金模式」(沿用Axie Infinity年代名詞)。不過開發者都小心監控代理唔會搞亂遊戲平衡,所以更有意義嘅玩法係遊戲將AI代理設計成重要組件。
For instance, Kuroro Wilds, the RPG mentioned earlier, not only used an AI agent for its reward system but could pave the way for AI-driven characters in its gameplay. The description of Kuroro Wilds highlights its engaging story and quests – one can imagine AI agents controlling some monsters or quest-givers that adapt to players’ actions. Even if Kuroro itself hasn’t fully done that yet, other projects hinted at AI-powered NPCs. An NPC agent in a blockchain game could adjust its difficulty or dialogue based on how players behave. Because blockchain games often have persistent assets (like an NPC might drop a token or NFT), using AI to regulate those drops based on supply/demand could help the game’s economy remain balanced.
例如早前講過嘅Kuroro Wilds,除咗用AI代理主導獎勵系統,未來好大機會有AI驅動角色加入玩法。根據介紹,Kuroro Wilds有吸引人嘅劇情同Task——可以想像部分怪獸或任務NPC會由AI代理控制,因應玩家行為動態調整。即使Kuroro目前仲未做到,其他Project都不斷試水AI配NPC。區塊鏈遊戲世界好多資產都持久(例如NPC出Token或NFT),用AI去調劑分佈同掉落,根據供需現實調整,有助遊戲經濟保持健康。
Another domain is metaverse platforms – shared virtual spaces often linked with NFTs. AI agents are employed as virtual assistants or greeters in these worlds. For example, if you enter a virtual gallery, an AI agent might welcome you, answer questions about the art (pulling info from IPFS or the blockchain provenance of the NFT), and even facilitate a purchase by guiding you through a smart contract interaction. Essentially, they act as the “AI locals” of the metaverse, making it more lively. Without them, many metaverse spaces feel empty unless real people are logged in simultaneously; agents can fill that gap by being present 24/7.
另一個範疇就係元宇宙平台——通常係同NFT有關嘅虛擬共享空間。AI代理通常會派去做Virtual Assistant或迎賓。例如,你去虛擬畫廊,會有AI代理打招呼、答你關於個藝術品問題(可即時由IPFS或區塊鏈拉數據解釋NFT來歷),甚至手把手教你點落單經智能合約買收藏。其實佢哋就係元宇宙世界入面嘅「AI街坊」,令成個空間更加生動。如果無咗佢哋,只有真人即時上線先會熱鬧,但有AI代理駐守就可以全天候Keep住運作。
Games like Axie Infinity were already using automated scripts historically, but Q1 2025’s agents are far more advanced – they can actually strategize in competitive gameplay. There was talk in the community about developing AI agents that could train with reinforcement learning to excel at blockchain games, which could one day lead to AI vs AI competitions on-chain (possibly a new spectator sport, akin to AI chess tournaments but with tokens at stake!). Some early experiments had AIs learn trading-card style games on blockchain, finding novel card combos that human players hadn’t. This kind of exploration can enrich game meta or even help
像Axie Infinity咁嘅遊戲以前已經有人寫Script搵錢,但去到2025年Q1嘅代理比以前高級得多——佢哋真係識競技性謀略。圈內討論緊要發展可以用強化學習自我訓練以掌握區塊鏈遊戲嘅AI代理,未來有可能誕生「AI對AI」鏈上對賽(可能變成新型觀戰運動,好似AI西洋棋大賽但攞Token做賭注!)。有早期實驗試過教AI學玩卡牌對戰遊戲,結果發掘咗啲人類玩家未見過新組合。持續咁發掘可以豐富遊戲Meta甚至幫助...developers identify if certain assets are too powerful.
開發者可以辨識某些資產是否過於強大。
In summary, in gaming, AI agents serve as both helpers and challengers – they can automate the boring parts for players (earning tokens, doing repetitive quests), or they can become part of the game’s fabric (smart NPCs, dynamic events). The ultimate vision is games that can run largely autonomously with AI-driven content and characters, which fits nicely with the decentralized ethos – imagine a game world that continues evolving even if the original dev team steps back, because AI agents keep it alive and interesting. 總結而言,在遊戲世界中,AI代理人既是助手也是挑戰者——佢哋可以幫玩家自動化一啲悶蛋工作(賺代幣、做重複任務),又可以成為遊戲結構一部分(智能NPC、動態事件)。最終目標係令遊戲可以大致自動運行,內容同角色都由AI推動,咁就好符合去中心化理念——想像下,就算原本嘅開發團隊退出,遊戲世界都可以繼續演化,因為AI代理人令佢持續有活力同趣味。
It’s early days, but Q1 2025 showed a glimpse of how AI agents could transform Web3 gaming into a more autonomous, immersive experience, where not all characters you meet are human, yet they can be engaging and beneficial to the ecosystem.
現階段仍然好初步,但2025年第一季已經見到AI代理人點樣可以將Web3遊戲變成一個更加自動化、沉浸式嘅體驗——你遇到嘅角色未必全都係真人,但佢哋一樣可以引人入勝,甚至為生態圈帶來好處。
Major Platforms, Projects, and AI Agent Tokens Leading the Space
Skip translation for markdown links and image.
As the AI agent trend took off, certain platforms and projects emerged as the backbone of this new ecosystem, each contributing in different ways – from providing infrastructure to issuing popular tokens that investors flocked to. Here we highlight some of the major players and tokens shaping the AI agents space in Q1 2025:
隨住AI代理人成為熱潮,一啲平台同項目成為呢個新生態嘅支柱,佢哋以唔同方式作出貢獻——有啲提供基建,有啲發行吸引投資者嘅熱門代幣。以下我哋會重點介紹喺2025年第一季塑造AI代理人領域嘅主要玩家同代幣:
- Virtuals Protocol (VIRTUAL): Often mentioned as ground zero for the AI agent explosion, Virtuals is a decentralized platform (launched in 2021) that makes it easy to create, deploy, and monetize AI agents on-chain. Virtuals provides a framework called GAME (Generative Autonomous Multimodal Entities) for building agents with minimal code, using modular components. Essentially, users can design an AI agent (define its mission, plug in AI models like language or vision, set its permissions and budget) and then mint it as an ERC-20 token on Virtuals. Each agent token represents a share/instance of that agent. This innovation of tokenized AI agents is key – it means agents can be owned, traded, and have their own micro-economies. For example, if an agent becomes popular or profitable, demand for its token rises, benefiting holders. Virtuals also introduced a co-ownership model, allowing multiple developers to collaborate on an agent and share its revenue (which is distributed via on-chain rules).
- Virtuals Protocol(VIRTUAL):經常被稱為AI代理人大爆發嘅起點,Virtuals係一個去中心化平台(2021年推出),方便大家喺鏈上創造、部署、同變現AI代理人。Virtuals有個名叫GAME(Generative Autonomous Multimodal Entities)嘅框架,令建構代理人基本唔使寫好多code,只要拼湊模組就得。基本上,使用者可以設計AI代理人(設定目標、插入語言或視覺AI模型、設權限同預算),之後仲可以將佢鑄造成Virtuals上嘅ERC-20代幣。每一個代理人代幣就代表嗰個代理人嘅一份/一個實例。呢個代理人代幣化創新好重要——代理人可以被擁有、買賣,仲有自己專屬小型經濟體。例如,有啲代理人受歡迎或者賺到錢,佢個代幣需求就會升,持有人就得益。Virtuals仲引入咗共創共擁模式,容許多位開發者一齊合作整個代理人,兼共享佢嘅收益(收益會按鏈上規則分配)。
By late 2024 and into Jan 2025, Virtuals saw huge growth. Its native token VIRTUAL rallied ~850%, hitting an ATH in January, and was trading around $1.22 with nearly $800M market cap at time of reporting. This made it the second-largest AI agent-related token by market cap. The growth was fueled by major ecosystem milestones: they launched features on Coinbase’s Base chain for co-ownership, and several AI agents built on Virtuals achieved viral popularity in entertainment (like the aforementioned Luna vocalist). Additionally, Virtuals operates as an AI launchpad – projects like CLANKER, VVAIFU, and MAX were noted to have used Virtuals to kickstart their agents, contributing to over $60 million in protocol revenue. In short, Virtuals is to AI agents what Ethereum was to ICO tokens – the primary platform where innovation is happening, which in turn drives value to its token and network. 去到2024年尾到2025年1月,Virtuals迎來爆炸式增長。佢本身嘅VIRTUAL代幣升幅高達約850%,1月創下歷史新高,報導時大約**$1.22,市值近$8億美元,成為市值排第二大嘅AI代理人相關代幣。增長推手包括生態圈重大里程碑:例如喺Coinbase Base鏈開放共創功能,同埋有AI代理人喺娛樂界爆紅(例如之前提過嘅Luna歌姬)。另外,Virtuals都係一個AI漏洞台——有啲項目好似CLANKER、VVAIFU、MAX**都用佢嚟起步開代理人,加埋為協議帶嚟超過$6千萬美元收入。簡單講,Virtuals對AI代理人就好似以太坊對ICO代幣——係個最主要、最爆發啲創新嘅平台,而呢啲創新都會為代幣和網絡帶嚟價值。
- ai16z (AI16Z token): This project grabbed attention both for its tongue-in-cheek homage to a VC legend and its pioneering model of an AI-governed DAO. Launched in late 2024, ai16z deployed an AI agent (nicknamed “Marc” after Andreessen) as the operational head of a decentralized venture fund. The agent uses the Eliza multi-agent framework to coordinate decisions across platforms, maintaining a coherent strategy. The AI16Z token acts as both governance and utility – holders can vote on proposals and the token is used for transactions within the ecosystem. The project also set an interesting economic parameter with a fixed supply of 1.1 billion tokens, and offered a high staking yield (~31.4% APR) through something called the ai16zPOOL to encourage participation.
- ai16z(AI16Z 代幣):呢個項目因為一來用咗VC界傳奇嚟玩味致敬,二來帶頭搞AI主導DAO模式引起市場關注。2024年底面世,ai16z部署咗一個AI代理人(用Andreesen個名Marc做花名)做去中心化創投基金嘅實際「老細」。佢用咗Eliza多代理人框架協調唔同平台嘅決策,保持統一策略。AI16Z代幣同時擔當治理權及應用權兩大角色——持有人可以參與提案投票,亦可以用代幣進行生態內交易。佢仲定咗有趣經濟參數——固定供應11億枚,而且設有ai16zPOOL,提供約31.4%年收益率鼓勵大家參與質押。
By January 2025, ai16z’s market cap surged to $2 billion, reflecting massive interest. It demonstrated that the community was willing to invest in a concept of an AI-managed fund – essentially trusting an algorithm to identify and perhaps even execute startup investments or trading opportunities. ai16z’s success also underscored the multi-chain aspect of AI agents: it operates on Solana, showing that this movement isn’t confined to Ethereum or any single chain. The use of Solana’s high throughput likely helps ai16z agent to do rapid-fire transactions when needed. Overall, ai16z stands as a proof of concept that autonomous organizations can exist – where an AI is effectively the CEO – and the crypto community will assign substantial value to them. 到2025年1月,ai16z市值升至20億美元,反映咗巨大關注。證明大家願意投資呢種AI管理基金——願意信一個算法去揀初創,甚至自己執行投資或者交易。ai16z亦證明咗AI代理人都有多鏈屬性:佢基於Solana運行,唔局限喺以太坊等單一公鏈。Solana高TPS,令ai16z代理人有需要時可以極速執行交易。總括而言,ai16z就係自主組織真正能存在嘅實例——AI真係當上「CEO」——而加密社區會畀佢地非常可觀嘅價值。
- Fetch.ai / Artificial Superintelligence Alliance (FET): Not all key players were new in 2025. Fetch.ai (FET) has been around for a few years, building an AI-agent framework and network. In 2025, Fetch.ai joined forces with SingularityNET and Ocean Protocol to form what they termed the **Artificial Superintelligence Alliance (ASI Alliance)**. This collaboration aimed to combine strengths: SingularityNET brings expertise in decentralized AI marketplaces and AGI research, Fetch.ai contributes its agent technology and tooling (e.g., their agent-based DeltaV platform), and Ocean provides the data infrastructure and marketplaces for AI training data. Together, this alliance positions itself at the forefront of decentralized AI development. In context of crypto agents, the alliance and particularly Fetch.ai’s tech provide the underlying tools to make agents smarter and more interoperable across networks.
- Fetch.ai / Artificial Superintelligence Alliance(FET):唔係所有主要玩家都係2025年新登場。Fetch.ai(FET)早幾年已經喺AI代理人框架同網絡度深耕。到2025年,Fetch.ai同SingularityNET、Ocean Protocol聯手組成人工超智能聯盟(ASI Alliance),目標係整合大家嘅強項:SingularityNET資深於去中心化AI市場及AGI研究,Fetch.ai負責代理人技術及工具(例如其DeltaV代理人平台),Ocean就供應AI訓練資料底層基建同數據市場。呢個聯盟放眼成為_去中心化AI發展_前沿。對於加密代理人嚟講,聯盟,特別係Fetch.ai技術,提供咗令代理人更智能、跨網絡兼容嘅底層工具組。
Fetch’s token FET was highlighted as the AI agent token with the largest market capitalization at the time, suggesting it had surpassed even Virtuals in value by Q1. (Indeed, FET and SingularityNET’s AGIX token had significant rallies, given their connection to AI narrative in general). The alliance’s goal of pursuing AGI (Artificial General Intelligence) in a decentralized way is a long-term moonshot, but meanwhile, their platforms are being used for practical agents – from logistics optimization to predictive oracles in DeFi. The Predictoor product by Ocean, which processed $800M in data marketplace volume in six months, indicates the kind of scale at which these infrastructure projects operate, feeding useful info to AI agents. In sum, the ASI Alliance and FET token represent the more infrastructure and research-focused side of crypto AI agents – less hype-driven, but providing serious tech and (potentially) the highest-end AI models that others can build on. FET代幣被標榜為當時最大市值嘅AI代理人代幣,即第一季甚至超越咗Virtuals。(事實上,FET同SingularityNET嘅AGIX都因為同AI熱潮有關連而出現重大升浪。)聯盟以去中心方式追求AGI(通用人工智能)係一個長線大計,但現階段佢地平台已經應用喺好實用代理人——由物流優化至DeFi預測oracle等。Ocean嘅Predictoor產品六個月內處理咗$8億美元數據市場成交額,證明呢啲基建級項目能做到極大規模,提供重要資料俾AI代理人用。整體來講,ASI聯盟同FET代幣代表咗加密AI代理人中偏向_基礎建設同科研_一方——講實力多過炒作,提供硬核技術及(潛在)最高端AI模型俾其他人搭建應用。
-
OriginTrail (TRAC): At first glance, OriginTrail is about supply chain and Web3 data, not AI agents. So why is it counted among “AI agent tokens to watch”? The reason is that good data is the fuel for good AI. OriginTrail’s decentralized knowledge graph and verifiable data platform can serve as a backbone for AI agents that need trustworthy information. For instance, an AI agent used in enterprise supply chain optimization could pull authenticated data via OriginTrail to make decisions. OriginTrail’s partnerships with big firms (Oracle, BSI, etc.) suggest its data might feed into AI-driven automation in those industries. The TRAC token is used to stake and reward data provision and ensure data integrity on the network. As AI agents take on tasks like verifying supply chain provenance or automating logistics (areas where AI + blockchain has clear value), a project like OriginTrail becomes essential plumbing. By Q1 2025, TRAC’s importance was recognized, and it maintained a healthy market cap (not as high as the flashy agent platforms, but a solid long-term bet). With a max supply of 500M and tokenomics encouraging usage in the network, TRAC is poised to grow if AI agents expand into real-world enterprise use cases that require searchable, trustworthy data – in effect, trying to be the “Google of Web3” as the project envisions, which in turn would be heavily utilized by AI agents needing to query that knowledge graph.
-
OriginTrail(TRAC):表面睇,OriginTrail講供應鏈同Web3數據,似乎唔係講AI代理人。點解都被列入「AI代理人重點代幣」?原因好簡單——優質數據就係優質AI燃料。OriginTrail分散式知識圖譜同可驗證數據平台,可以成為需要可靠資訊嘅AI代理人骨幹。例如,企業做供應鏈優化嘅AI代理人,可以拉OriginTrail認證數據科研據。OriginTrail與大型企業(Oracle、BSI等)合作,意味其數據未來有潛力供應AI自動化。TRAC代幣可用黎質押及獎勵數據提供者,同確保網絡數據完整性。隨住AI代理人負責驗證供應鏈來源或自動化物流(AI+區塊鏈結合價值明顯範疇),OriginTrail就變成不可或缺嘅底層設施。到2025年第一季,TRAC已取得重要地位,市值保持健康(未必及最爆新代理人平台咁高,但算係穩陣長線之選)。最高供應5億枚,代幣經濟設計鼓勵網絡應用——只要AI代理人落地到企業、需要「可搜尋、可靠數據」就有市場,有機會變成Web3時代嘅「Google」一樣嘅角色,屆時AI代理人查問知識圖都要靠佢。
-
Other Notables: There are other emerging names: ChainGPT launched AI agents geared towards on-chain analysis and even comedic content (as per a LinkedIn post, it released a second agent for market intelligence that doubles as a Web3 “comedian” to boost engagement. BULLY was cited as an example of an “AI Agent meme coin”, combining AI narratives with meme culture in the Virtuals ecosystem. While perhaps not technically innovative, such meme agents attract community and liquidity rapidly, albeit with high risk. We also have the broader category of AI-focused crypto projects (like Cortex, Numerai, etc.) which aren’t agents per se but related. Notably, even some mainstream crypto protocols started adding AI integrations – by end of Q1, there were hints of things like Uniswap considering AI-powered interface assistants, etc., showing how the big players might incorporate agent tech without launching their own token.
-
其他值得留意項目:仲有其他新興項目:ChainGPT出咗主攻鏈上分析甚至搞笑內容AI代理人(據LinkedIn貼文,佢出咗第二款同時做市場情報同Web3「笑匠」身份嘅AI代理人,專門提升互動率。BULLY就係「AI代理人meme幣」代表,將AI熱度同迷因文化喺Virtuals生態結合。雖然創新度一般,但meme代理人好快吸引社群流動性,風險都唔細。其實AI相關加密項目(如Cortex、Numerai等)都係大類,雖唔算真正代理人,都有關連。值得一提,甚至主流大幣協議都開始加AI功能——第一季尾已經有人放風,例如Uniswap都研究AI助手介面,反映大玩家都可能融入代理人技術,而唔使自己推新代幣。
Key Trends and Technologies
(此句不翻譯)Driving AI Agents
推動AI代理
數個重要的趨勢與技術發展於2024年底至2025年第一季匯聚,助燃AI代理在加密貨幣領域的興起。了解這些脈絡,有助於洞悉_為何這一波浪潮現在發生_,以及未來的發展方向:
AI的「iPhone時刻」:先進模型與開源突破
AI代理受惠於AI模型能力的急速進步。許多專家稱2024年底/2025年初為AI的「iPhone時刻」,即AI科技變得既易用又強大,從而催生大規模普及。有兩個突破尤其重要:
- 大型語言模型(LLMs)再攀高峰:以OpenAI的GPT-4(有時在圈子內稱為“o1”)為標竿,開源社群推出了如Llama 2及DeepSeek-R1等模型。後者由中國新創DeepSeek開發,效能媲美美國頂級模型,但運行成本僅為其一小部分。2025年1月,DeepSeek-R1發佈,聲稱使用成本比OpenAI的對等模型便宜20至50倍。這是行業的分水嶺:突然間,運行一個高水準AI代理成為更多加密項目的經濟可行選項(而不再需要雄厚資本壓力去頻繁調用昂貴API)。_Switchere對DeepSeek的分析_指出,採用R1有助於AI代理平臺降低開支,讓重點回歸實用價值,而非炒作(How DeepSeek May Affect AI Agent Tokens)。事實上,項目方也迅速整合了R1或類似模型;例如,一批使用自定DeepSeek模型的AI代理已於初步階段推出,證明高效能能夠以低廉成本實現(First Blockchain AI Agent Integrates Custom DeepSeek Model)。
這帶來一個重大轉變:AI不再是瓶頸;現時代理的推理、語言理解、甚至多工能力,較2022年代的模型質素大躍進。這種「智能加成」令AI代理能夠自動處理更複雜任務(不只剩下噱頭,實際上真有用)。同時也讓這領域民主化——小型開發團隊可運用頂級模型,而不致傾家蕩產,往往只需用HuggingFace等開源框架。
- 多模態及專用AI框架:更佳模型之餘,也有針對代理操作的框架。例如Eliza框架支援多代理模擬,讓代理能在不同環境下保持身份與知識。像Chain-of-Thought (CoT)、Tree-of-Thoughts等技巧被納入代理推理,強化決策深度,有助代理將難題有效地拆細成子任務(比方「分析新Token、判斷是否騙局、再制定投資方案」這些複雜流程)。代理亦陸續善用**檢索增強生成(RAG)**結合向量資料庫,實現長期記憶、隨時抓取資訊,而不再受限於LLM的上下文限制。這些進步令新一代AI代理更聰明、更可靠、能實時操作。
種種AI進展令結果一目了然:自主式加密代理在2025年終於變得實用。過往代理可能經常失敗或輸出錯誤訊息,現時幾近GPT-4水準的智能既可負擔、又可普及,代理終於能模仿專家級人類做事(至少在特定領域裡)。這推動了創業者及開發者勇於於各種垂直市場嘗試代理,且有信心AI可勝任。
多代理系統與協同運作
隨著單一AI代理能力提升,一股新潮流是將它們串聯成多代理系統,協同處理複雜、循序漸進的流程。不再是一個龐大AI大包大攬,而是一組各司其職的代理協作。這構想於AI學界存在已久,加密世界則提供了落地實驗場——因在鏈上,代理可透明互動、交易。
2025年Q1期間,我們見到如DeFi平臺部署多個不同崗位的代理:一個專職監控放貸市場,一個負責執行債務再融資,一個專責耕作收益,等等,全部背後有統一的策略。平臺於是如團隊般編排這些代理,常見一名「經理」代理或協調型智能合約確保所有代理齊心達致用戶目標。
行業專家明確指出,協同多代理工作流程被視為區塊鏈AI的重大躍進。投資界正聚焦於建設「協調代理集群的中介軟體與協議」團隊。這牽涉:標準化代理通訊方法(如libp2p協議或鏈上事件)、代理間自己如何協商分工、如何解決意見分歧。
一個很實際的方向是AI代理市場 —— 即開放市集讓代理能外判子任務。例如在某些Virtuals場景下:一個有預算的代理發出請求(「我要一張圖片用於貼文,支付0.01 ETH」),另一個專門生成圖片的代理完成該任務,全自動化。這本質上創造了鏈上自主服務經濟。有些項目如HyperSDK(這裡用作假名示意)或許正志在穩定推動代理對代理商業。
另一點是代理孵化器與啟動板,之前在Virtuals已有提及。AI啟動板理念,是簡化新代理的市場推出流程,包括保障資金來源(如DAO或投資人給代理金庫起始資本)、基礎設施共享。有不少啟動板項目,發行如CLANKER、VVAIFU、MAX等代幣,主力於代理籌資、推廣創新。生態有如飛輪:只要其中一名代理成為爆款明星(如人人追捧的炒幣機械人),啟動板代幣及聲譽水漲船高,吸引更多資金與人才,如此循環。唯一風險是,若缺乏「爆款項目」的持續供應,人氣可能於巨浪之間冷卻下來。
最後,評測及標竿系統更受重視——怎知代理A比代理B厲害?正因如此,出現了如**GAIA benchmark**這類測試AI代理現實問題求解能力的工具。Eliza框架在GAIA測評中錄得約19.4%分數,雖非最高,卻證明在Web3應用場景有不俗實力。這類指標既有助優化產品,也讓投資者分辨技術創新還是僅作宣傳。
總結而言,多代理系統及其協調運作,讓AI代理變得可擴展和模組化。潮流不再是單一通才,而是多人工專家型代理組隊協作——猶如現實人類組織模式,但這裡的「員工」全是AI。2025年Q1這方面已開下基礎,隨著成功案例出現,發展只會更快。
與區塊鏈科技的深度融合(DeFi、智能合約、預言機等)
若沒有區塊鏈基礎,AI代理不會茁壯發展。2025年Q1一大趨勢,就是AI代理與加密技術棧不同層融合更深,令操作更高效、更安全:
-
更智能的預言機與數據源:代理十分依賴數據,像API3、Chainlink等項目開始為AI量身定製預言機服務。例如,一個AI代理或需同時獲得價格、波幅指數、社交情緒指數等匯總數據。預言機網絡開始提供這類組合型資訊產品,讓代理能以代幣訂閱鏈上更新。這種合作具雙向意義:有些AI代理用來反向增強預言機本身——例如Chainlink實驗以AI實時檢測異常數據、自動發現操控痕跡,即時充當AI看門狗提升資料安全。
-
智能合約錢包與賬戶抽象:以太坊推行的**賬戶抽象(ERC-4337)**令智能合約錢包變得易用,可自訂操作規則。許多AI代理控資金靠這種錢包,能編程如「若X條件成立則簽Y交易」這類複雜指令。賬戶抽象還支持贊助Gas費(代理可指定贊助錢包負責Gas費,毋須自己管理ETH),大大簡化操作流程。之前也見到代理透過meta-transactions發送操作意圖,由其他服務自動支付Gas,這有助用戶體驗:代理可代表用戶即時操作,而用戶只需事前給予廣義批核。整體而言,區塊鏈基建正積極配合,讓 AI-driven transactions happen more seamlessly
AI 驅動嘅交易變得更加無縫順暢 -
Dedicated Chains and Protocols for AI Agents:
有一個叫做「Agent Chains」嘅概念,意思係為 AI agent 活動而優化嘅區塊鏈或子網絡。例如,有啲網絡會優先考慮交易速度同高吞吐量,讓 agent 可以更頻密咁互動,而唔會出現高延遲或者高成本。有啲項目就有暗示會推出專門用嚟託管 AI agent 群嘅側鏈(可能喺共識層預設咗 agent 溝通協議)。雖然第一季冇一個真正上線,但呢個概念已經流傳緊,甚至可能會喺 2025 年稍後實現。 -
Deflationary or Utility-driven token models:
針對 agent 平台嘅通證經濟有個新趨勢,就係確保通證價值係和實際使用掛鉤。例如 Virtuals,就因為 agent 同 co-owner 活躍度越高,大家燒落費用嘅 VIRTUAL 會越多,令到通證價值同實際活動相關聯。又例如,有啲平台要求你 staking 通證先可以創建或者運行 agent(令大家有「賭注」,減少垃圾/spam agent)。AI agent 通證開始採用一啲 demand 跟 active agent 數量、agent 表現而變動嘅模型,唔再只係靠炒作。呢個模式都係由 DeFi 借鏡而來(好似 DEX 通證會因為交易費增值)。有實用價值,係為咗 address 炒作導致泡沫呢個問題。 -
Security frameworks and sandboxes:
有見於俾 AI code 控制資金有風險,部分項目已經實行咗sandbox 環境同 fail-safe 機制。例如,一個 agent 嘅智能合約錢包可能會有規則:每日唔可以無多人審批就 send 多過 X 數額,或者發現可疑行為即時啟動緊急開關。呢啲做法喺安全圈度討論咗好耐,目標係確保 AI 失控或者俾人 hack 都唔會一次過損失全部資產。另外,審計工具都開始擴展去檢查 AI agent 嘅邏輯(唔止審智能合約 code,仲會 check 策略定訓練數據有冇後門)。雖然發展緊,呢個係將區塊鏈安全精神帶入 AI agent 世界嘅關鍵步伐。
簡單嚟講,區塊鏈科技同 AI agent 正喺協同進化 —— 區塊鏈提供鷄軌同守則俾 agent 操作,而 agent 用量增加又反過來影響新區塊鏈功能/協議設計(例如更大彈性、更高安全性、更多數據可用性)。呢個正向循環令到「Agentic Web」逐漸成為現實可能。
Community and Cultural Phenomenon: Memes, Hype, and Education
社群與文化現象:迷因、炒作、教育
冇一個加密趨勢係唔帶文化元素。AI agent 並非只係技術自己冒起,而係由社群熱情、迷因文化同更廣泛敘事推動。
-
Memetic Power:
「Autonomous agents」呢個概念本身就好適合玩 meme 同人格化。例如 Twitter 上有 crypto 用戶笑緊「AI degens」凌晨三點買幣、agent 專門發 shitpost(例如 Truth Terminal)。仲有啲 meme 幣靠 AI 熱潮吸引群眾——其實冇真 AI,但係改個 AI 相關名就新炒一轉(就正如「Inu」瘋潮嗰陣咩都爆)。討論都暗示過我哋已經過咗一段由 meme 推動嘅炒作期。例如 BULLY(Virtuals 生態 meme coin),AI Agent meme 幣靠 community 支援同趨勢力量「爆紅」。雖然好多咁嘅幣可能唔長久,但曝光度急升——連 casual trader 都知「AI agent」係 buzzword,推高大眾興趣循環。 -
Education and Accessibility:
值得一提嘅正面趨勢係,好多 AI agent 項目都主動教用戶認識加密同 AI。因為 AI agent 通常有 chatbot 介面,新手可以直接問 agent 學嘢。例如,有人可以問 agent 點 stake,點用 DeFi 平台。咁就唔洗睇十幾廿份文件,直接問 AI 助手。咁一來,平台越多前端/支援位用 AI agent,用戶 barrier 越低。如果呢種趨勢持續,將大大拓展加密貨幣入門人數(設想將來每個錢包都有個 AI 導師,每個 DApp 都有 AI guide)。 -
Open Source and Community Development:
AI agent 熱潮有堅強開源精神。項目會分享 agent blueprint、策略 template、甚至 agent「人格」等資源給大家二次創作。Reddit(如 r/Build_AI_Agents)同 Discord 社群相繼成立,一齊研究 agent 開發,分享邊啲 model/prompt 做啲乜最好。咁樣既協作文化可以加速發展,例如有人成功將 agent 連接 Uniswap contract 好順,呢啲知識大家即傳開。亦代表係群體推動,唔係單一機構主導,好似 crypto 咁分散,由無數 self-starter 推進創新。 -
Regulatory Scrutiny as a Theme:
雖然未算成為主流潮流,但第一季尾開始有多咗有關監管嘅討論。值得作為未來趨勢關注:決策者開始問 AI agent 適合咩法規。係咪投資顧問?如果 agent 管錢,創建者要攞牌?出事邊個賠?呢啲問題喺 panel 討論同文章中都有人拎出嚟。雖說 Q1 未有實質法規實施,社群都準備好應對,有啲平台都預早 KYC agent,或喺某啲地區限制功能。所以,行業個敘事慢慢由 Wild West 向合規意識推前,尤其係幫人管大錢嗰啲 agent。
總結,除咗技術面,AI agent 熱潮都係一種社會現象。成個故事由夢想家覺得係自動化未來到迷因大佬玩樂賺快錢,混合咗炒作、真心熱情、教育同責任討論,一齊為 2025 Q1 加密圈定咗主基調。
#Risks, Challenges, and Criticisms of the AI Agent Boom
#AI Agent 熱潮嘅風險、挑戰同批評
AI agent 喺 crypto 世界出現固然令人興奮,但同時都帶嚟一堆風險同挑戰,2025 Q1 熱烈辯論咗一輪。要有全面睇法,必須仔細分析幾方面:
Technical Risks: Data Quality, Security, and Reliability
技術風險:數據質量、安全同可靠性
AI agent 靠嘅就係底層數據同代碼。其中一大風險係數據準確性同可靠性。如果 agent 攞到啲錯誤或者過時資料,決策可能會大錯特錯。例如搵到個滯後價格源,買賣都會蝕底;又或者 agent 係根據一啲其實一個鐘前已經被否定嘅謠言嚟提供建議。第一季都試過有小型意外,例如 agent 出錯口——明明某條鏈冇停,但佢 scrape 咗篇舊新聞誤報。難題係如何確保 agent 攞到最新同正確資訊,去中心化環境底下更難。解法包括用多個數據源(5個資訊源都估一樣,先可信啲),又或者 agent 之間互相 double-check。不過風險永遠存在,AI 誤導/資訊錯誤係實際問題,特別係用戶無條件信 agent 嘅時候。
安全亦係重大問題。啲 agent 天生可以裝錢搬錢,自然會成為攻擊目標。AI agent 如果俾人入侵後果好嚴重——hack 到 agent key 或者操控邏輯,就可以 direct 输送資金。仲有一樣風險係agent 遭遇 phishing 或 social engineering:攻擊者可以畀啲惡意輸入,呃 agent 洩露敏感資料或者做違規行為(有啲似 chatbot prompt injection)。有專家指出,管理錢包 key 嘅 agent 係 潛在目標,必須高度安全。最佳做法包括agent 所有溝通都要加密、嚴格限制權限(就算被 hack 都唔應該乜都做到,只開最少權限)、定期 code & AI model 安全審計。由於屬於新領域,安全機制仲追唔上。第一季無重大 AI agent 被 hack 公開報道,但好多白帽黑客已經積極測試,假如設防唔足遲早出事。
可靠性又關理解。有時候連好進階嘅 AI 都會喺 edge cases 或複雜查詢 上出錯。例如問 agent 一個涉及某地 crypto 法律嘅高難度問題——agent 可能完全唔識得處理;或者一句命令唔夠清楚,agent 就理解錯,做多咗/做漏野。呢種**「複雜查詢理解有限」**嘅問題係大家認同嘅風險。目前嘅做法係:清楚規範 agent 責任範圍(即係唔好當 trading bot 會解釋稅務);而且設有人類介入 fallback,例如 agent 回答完畀用戶一個「滿唔滿意」按鈕,唔啱就即時交人 check。
至於 overfitting and lack ...
(此處內容截斷,如需繼續,請補回後續段落)of generalization** – an agent might do well in normal conditions but fail during black swan events because it never encountered similar data in training. This is risky in crypto where extreme events happen. Hence, risk management components or circuit breakers are important to stop agents when things go way out of expected bounds.
泛化問題——代理在正常情況下可能表現良好,但一遇到黑天鵝事件時就失效,因為訓練時從未接觸過類似的數據。呢點喺加密貨幣行業特別高危,因為極端事件成日發生。所以,風險管理模組或者緊急制動器就好重要,用嚟喺情況極度異常時即時終止代理行動。
Over-Reliance and Human Oversight
With any automation, there’s the danger of people trusting it too much. Over-reliance on AI agents can lead to complacency. If users start deferring all decisions to agents without understanding the rationale, they could be in trouble if the agent goes awry. One scenario: an agent advises holding a certain token during a market downturn; a user might accept that blindly and incur heavy losses, whereas a seasoned investor might have second-guessed and sold. There were already anecdotes of less-experienced traders following AI bots into trades and getting burned when the market turned sharply (some Telegram groups formed around copying a particular agent’s moves, reminiscent of copy-trading human “gurus”).
所有自動化都存在一個風險,就係人會太過信任佢。過份依賴AI代理,會導致用家懶散、唔再自己判斷。如果用戶完全唔理會理由,全盤交由AI決定,一旦代理出錯,就極易出現問題。例如,代理建議跌市時繼續持有某隻Token,普通用家可能盲目跟從,結果大蝕;但老手可能會質疑AI再自己賣出。市面已經有唔少例子,講緊新手炒家抄AI bot入市,轉頭市況急轉直下就受傷,有啲Telegram群組會專抄某個AI代理嘅操作,似足以前抄人類“大神”炒賣。
重點係,點樣適當人機協作,避免盲目信任? 專家建議要當AI代理係助手,而唔係上司。Botpress嘅指引都強調,AI只能作輔助,用戶要參考自己嘅研究結論,千祈唔好單靠代理。有啲平台設計上都防止過度自動化,重大決定只會推介,而必須用戶手動確認(或者可以設定咁做)。不過,咁做就減少全自動操作帶嚟嘅便利。要搵到平衡點唔容易。Q1時,多數用戶都係精通技術嘅早期玩家,會睇實AI,但如果呢類工具被大眾接受,特別係貪圖方便新手,過度信任風險愈來愈高。
另外有個哲學層面問題:決策責任。如果一個DAO用AI代理投票,最後出現壞結果,社群會唔會怪罪AI定係開發者?由於AI係“自主”運作,其實法律責任好模糊。私人代理出錯蝕錢,技術上用戶自己要承擔——但對用戶嚟講都會覺得難以接受,甚至有聲音要AI有保險、賠償等措施,但現階段仲好罕見。
Hype vs. Reality: Sustainability of the Trend
The crypto industry has seen many hype cycles, and skeptics of AI agents argue that this is just the latest buzzword bandwagon. Indeed, by March 2025 there was some cooling off from the initial frenzy. An analysis notes that after the initial wave of AI agent projects in 2024, there was rapid liquidity dilution by early 2025 – meaning so many projects popped up that investor money got spread thin. A lot of tokens mooned and then crashed as speculators jumped to the next thing, a pattern very reminiscent of the ICO era or DeFi summer.
加密貨幣界見過無數個炒作循環,AI代理都比人批評只不過係新一輪buzzword大潮。到2025年3月,熱潮已經稍為降溫。有分析指出,2024年AI代理項目井噴,至2025年初資金迅速攤薄——即係太多新項目導致投資者資金四散。唔少代幣一開始炒到爆,之後又大跌,投機者不斷轉戰下一個,模式好似ICO年代或DeFi summer一樣。
The challenge here is to transition from hype to substance. The article suggests we’re entering a more mature phase focusing on revenue and product performance, where only those agent projects that provide eal value and stable income streams will survive. This implies many current projects will fizzle out – essentially a coming consolidation. Q1 might have been peak hype; Q2 and Q3 might see some hard lessons (some agents will blow up funds, some tokens will go to near-zero when they can’t deliver promised tech).
市場要由炒作轉去實質發展好大挑戰。文章分析,現時踏入成熟發展階段,重點係收入同產品表現,只得真有價值、能穩定產生收益嘅代理項目先有得存活。大部分項目會被淘汰,產業將會整合。Q1係炒作高峰,Q2/Q3預期會有好多血淋淋教訓(有代理失控爆倉,有Token交唔到貨變廢紙)。
There’s criticism that, for all the talk, many AI agents are not yet delivering truly revolutionary results. Are AI-managed portfolios significantly outperforming the market? Are AI DAO governors making better decisions than humans? The evidence is still scant or anecdotal. Some early users reported modest gains or improvements, but nothing earth-shattering that couldn’t be achieved by a skilled human team. This opened debate: is the AI agent narrative outrunning the reality? Or as some on crypto forums put it, “Is this just DeFi automation with a fancy new name slapped on it?” The counter-argument from proponents is that these are early days, and agent tech will improve exponentially (especially with better AI models and learning from mistakes). But to convince the broader market, successes need to be visible.
市面好多批評指,AI代理其實未有帶嚟革命性改變。AI管理嘅組合係咪做到大幅跑贏市場?AI做DAO管理者有冇比人腦決策勁?證據好零碎甚至只係個別例子。部分首批用家都話,只係有輕微改善,完全唔係人類團隊做唔到嘅事。呢啲疑問引發討論:AI代理只係包裝,實際內容追唔上故事? 有人講,“咪就係以前DeFi自動化,換咗型靚名?” 擁護者就話,現階段為初步,技術會隨AI模型進步、經驗累積而幾何級提升,但要打入大眾市場,必須有睇得見嘅成功個案。
Another criticism revolves around tokenomics and value capture. Detractors say, okay, you have an AI agent token – what does it entitle you to exactly? If an agent is successful, does the token accrue any value or cashflows, or is it just speculative? Some agent tokens might lack clear utility (beyond governance or clout). The smarter projects, as we noted, try to link token value to agent usage, but not all do. If too many agent tokens end up being hype with no substance, it could tarnish the whole sector. We already saw by Q1 end some tokens that launched on hype (without a working agent product) lose 80-90% of their value quickly.
另外一個被質疑嘅係Token經濟及價值捕捉。對家話,AI代理有Token——咁持有人實際有咩權益?代理做得好,呢啲Token有無分紅/現金流,定根本亂炒?有啲代理Token根本無實際用途(除咗有啲治理權)。較成熟啲嘅項目會將Token價值同代理實用性掛勾,但唔係全部都咁做。如果太多代理Token只係無內容嘅炒作,成個版塊聲譽會受損。事實上,Q1都見到部分無實際功能、只靠炒作上市嘅Token,一段時間內價值已經跌咗八九成。
In essence, the sustainability question is front and center: can AI agents live up to the expectations? The consensus among more sober voices is that yes, they can be revolutionary, but it will require weeding out the noise. It’s similar to how the dot-com bubble burst and then real internet giants emerged. We may see an “AI agent bubble” deflate, but it doesn’t mean the concept is dead – just the excesses.
總括而言,可持續性係焦點之一——AI代理有冇可能兌現預期?較理性嘅共識係技術潛力革命性好大,但必須淘汰無謂渣滓。好似當年dot-com爆煲,最後先淬煉出真正嘅互聯網巨企。AI代理泡沫有可能萎縮,但唔代表概念玩完,只不過係要去蕪存菁。
Ethical and Regulatory Concerns
As AI agents become more autonomous, ethical questions arise. If an AI agent is instructed to maximize profit, will it engage in unethical behavior (like pump-and-dump schemes or exploiting loopholes that hurt others)? There’s a scenario where an AI trading agent figures out how to manipulate a low-cap token’s price to its advantage – essentially doing what a rogue trader might, but with no moral compass to say stop. Or consider an AI agent spamming a network or social media with misinformation to sway markets (one could argue the Truth Terminal agent promoting a meme coin was a mild version of this). There’s a risk of AI agents amplifying malicious activities if not properly checked. This leads to calls for guidelines or constraints on what autonomous agents can do, maybe encoded into their programming (akin to Asimov’s laws but for crypto finance).
AI代理愈來愈自主,就帶嚟道德問題。如果AI目標係賺到盡,會唔會做埋唔符合道德嘅野(例如拉高出貨、操控價格、鑽法律空子害人等)?有可能AI炒作代理發現可以操控細代幣價格自肥,等同無道德底線嘅莊家。同時,AI代理都有機會係Spam network、社交網站、散播虛假消息影響巿場(有啲人話Truth Terminal幫推meme coin都算係較溫和一例)。如果無好好把關,AI代理或會放大惡意行為。所以有人建議要有明確指引或者對代理能力設定技術規範(類似亞西莫夫機械人守則,但用喺crypto)。
On the regulatory side, various angles are being examined:
-
Financial regulation: If an AI agent is giving investment advice or managing a fund, should it be registered as an investment advisor or fund manager? Current laws obviously don’t contemplate non-human entities in those roles. Regulators might attempt to hold the creators or operators of the agent accountable under existing frameworks. For example, the SEC could say an AI-run fund still has a controlling person (the creators) who need to comply with regulations. There’s a grey area now, but likely to be tested if any AI agent fund loses a lot of consumer money.
-
金融監管:如果AI代理提供投資意見或管理資金,係唔係要註冊做投資顧問或基金經理?依家法律明顯未處理“非人類”擔任此類角色。監管當局有機會要求代理開發者或營運者負法律責任。例如SEC可能界定AI基金背後都有“控方人”,即係開發商,必須守規。依家灰色地帶多,如果AI代理基金大規模蝕錢,好大機會會畀人追究。
-
Liability and legal personhood: Some legal scholars are floating the idea that highly autonomous agents might need a status like corporate personhood – so they can be sued or can enter contracts. But that’s a very nascent discussion. For now, the default is that someone (the developer, the user, or the DAO that “owns” the agent) will be held liable for the agent’s actions. This uncertainty could hamper certain uses (for instance, a TradFi institution might hesitate to use a crypto AI agent because of unclear liability if something goes wrong).
-
法律責任及法人地位:有學者提出,權限極大嘅AI代理或需類似法人資格,可以被控告、簽合約。但相關討論都好初步。現階段,一出錯大多數都係開發者、用戶或者DAO要負責。咁多未知數,會令傳統金融機構對用AI代理做Crypto操作有所保留,怕萬一出事無法追責。
-
AML/KYC: An AI agent could be used to move funds in ways that obscure who is actually behind them. Regulators worry about agents being used as fronts for money laundering. Some exchanges that listed AI agent tokens in Q1 started asking questions about whether the token treasuries are properly KYC’ed, etc. If an AI agent holds significant assets, will it need a verified identity or to comply with travel rules when transferring large sums? These compliance issues are likely to surface. In one Twitter Spaces, a VC mentioned that blockchain-based AI agents will have to find efficient use cases that also fit into regulatory bounds (Blockchain needs efficient use cases for AI agents: X Spaces recap with VCs), hinting that agents running wild will face clampdowns.
-
反洗黑錢 / KYC:AI代理可能會轉移資金、隱藏背後真正人士。監管方擔心代理變洗錢工具。一啲平台2025年Q1上咗AI代理Token之後,都開始查Token資金庫有無做足KYC等。如果AI代理手持大量資產,遲早都要處理身份驗證、資金調撥時合規等問題。一位風投VC喺Twitter Spaces曾表示,區塊鏈AI代理一定要做到實用又合規,否則亂用只會等嚟整治。
Overall, while Q1 2025 was mostly focused on building and hype, these challenges and criticisms formed an undercurrent that responsible teams are paying attention to. How the community addresses data security, proper oversight, managing hype, and navigating legal issues will determine if AI agents can mature from a trend to a trusted, long-term part of the crypto ecosystem.
總括而言,雖然2025年Q1大多數焦點都係建設同炒作,但上述挑戰同批評已經成為暗湧。一啲認真負責團隊開始重視。點樣保障數據、有人監察、消化炒作、處理法律問題,將決定AI代理能否由潮流玩物變成Crypto生態嘅長遠基石。
Outlook for AI Agents in Crypto (Rest of 2025 and Beyond)
As we move past the initial rush of Q1, the big question is: what’s next for AI agents in the crypto space? The outlook for the remainder of 2025 is cautiously optimistic with a few key themes to watch:
(隨住Q1初段熱潮過後,最大問題就係:加密貨幣AI代理下一步點走? 2025年餘下嘅日子前景審慎樂觀,以下幾大趨勢值得關注:)
Towards an “Agentic Web”: Increasing Autonomy and Ubiquity
Industry leaders, such as Jansen Tang of Virtuals, envision an “Agentic Web” on the horizon – a scenario where AI agents handle a significant portion of digital transactions and services. This could be transformative: imagine by end of 2025, it’s normal for your personal AI agent to coordinate with others to do things like managing your multi-chain portfolio, finding the best way to refinance your crypto loan, scheduling your DAO voting while you’re on vacation, even running an e-commerce storefront for you that accepts crypto payments. And all these agent-to-agent and agent-to-human interactions would be secured and recorded on blockchain, giving transparency and accountability we normally wouldn’t have with black-box AI.
有業內領袖(如Virtuals嘅Jansen Tang)預見即將來臨嘅**“Agentic Web”——即係AI代理主導大量數碼交易同服務嘅新局面。想像到2025年底,大家都有屬於自己AI代理,互相協調:幫你管理多鏈資產、搵最抵嘅加密借貸重組、安排假期期間自動DAO投票,甚至幫你營運收虛幣支付嘅網店。所有代理之間、人機溝通都紀錄喺區塊鏈**,有透明度、有問責制,唔怕“黑盒AI”不透明。
This isn’t decades away – proponents say elements of it could be only months away. Already we have glimpses: personal
(呢個唔係遙不可及——有支持者話,部分關鍵功能幾個月內就現身。事實上,依家已經見到初步雛形:個人)finance agents、NFT marketplace agents等等。去到2025年後期,我哋可能會見到代理人整合到日常加密應用。例如,你隻加密錢包App可能會有個「AI助手」tab,可以一個界面執行你所有DeFi應用嘅指令。交易所可能會加入AI驅動嘅投資組合再平衡功能。部分功能好大機會因市場競爭加劇而陸續推出——邊個可以提供最聰明、最安全嘅AI助手,就有機會吸引用戶。
大家普遍預期代理人會變得同智能合約一樣普及,即作為智能合約之上的一層,加添智能。當代理人愈來愈多,佢哋之間亦會直接互動。我哋有機會見證新型協作行為出現:例如一堆代理人合作去維持一個去中心化對沖基金,又或者跨項目嘅代理人直接協調協議之間進行流動性交換,完全唔需要人為中介。
着重實用價值與驗證成果
炒作熱潮好大機會會被一種「我要睇成果」嘅心態取代。2025年餘下時間將會清楚辨認到邊啲AI代理項目真正交到功課。我哋預計:
-
弱勢項目被淘汰:好多一啲只求快錢、半生不熟嘅項目或者代幣,隨住用戶聚焦於明顯有效方案而漸漸消失。最後生存落嚟嘅,大多都會有活躍用戶群、實質收入,或者明確嘅績效指標可以展示(例如某隻由代理驅動嘅基金可以跑贏市場X%,又或者AI代理做客戶支援後,回應時間縮短Y%等等)。呢種達爾文式淘汰好健康,亦符合以往科技創新循環。
-
領先者制定業界標準:做得好嘅項目,可能會成為行業 facto 標準。例如,如果 Virtuals(虛擬代理平台)繼續領先,佢對代理人嘅代幣化標準可能會被廣泛採用,其他鏈都會實施Virtuals兼容性。又或者有其它平台喺代理人互通通訊方面表現最優,可能就會變成類似「代理人界嘅HTTP」。去到2025年尾,很可能見到最佳實踐與協議漸趨一致,甚至有正式標準機構或工作小組,致力規範AI代理介面。
-
同傳統/中心化金融整合:想真正證明價值,AI代理可能要走出加密圈。我哋有機會見到代理人同傳統金融或者Web2服務對接。事實上,早期例子包括Circle(USDC發行商)示範AI代理點樣自動處理USDC支付(參考Markdown link)。如果呢類實驗成功,傳統銀行或者金融科企Apps可能會引用加密AI代理處理跨境結算、資金調度等,證明佢哋喺更大金融系統內嘅效用。
到年尾其中一個關鍵指標,會係**AI代理實際管理咗幾多經濟活動?**如果DeFi TVL、交易量、DAO資金分配,有唔少份額係交由代理負責——而且交足功課——我哋就知呢樣野已經紮根落實。
持續創新:更智能、安全及專業化代理人
技術層面,我哋預計AI代理會愈嚟愈聰明、愈高效。在公開競爭(如DeepSeek、OpenAI等等)推動下,可能到2025年尾已經有DeepSeek-R2或者「GPT-5級」新模型。每次AI突破,都會即刻反映喺代理進步——理解力更高、推理力更強、出錯率更低。同時,模型可能會更專業化:例如一個專門根據市場數據優化交易嘅「AI交易員模型」,做起投資任務遠勝通用AI。我哋可能會見到有專業模型圖書館,代理可以按任務切換(語言、數量分析等)合適模型。
多模態代理都會進一步發展——即能同時睇、聽,甚至喺虛擬或現實空間操作。例如AI代理可以用API分析衛星圖片,幫助商品貿易決策;又或者自動掃描區塊鏈代碼庫,評估新DeFi項目質素。輸入數據越豐富,代理決策就越有根據。
安全層面,都會喺代理人對齊(確保AI目標同用戶價值觀、倫理守則一致)繼續創新。例如代理會有認證過嘅訓練數據避開魯莽行為。更完善嘅測試框架亦會應運而生——好似要將AI代理喺極端市場情境下壓力測試,先部署真錢操作(甚至有「代理測試網」之類模擬環境)。
監管科技都會係新領域:我哋可能見到初步合規AI代理。例如AI交易代理要跟足某啲監管規定,就會記錄所有決策方便審計、拒絕執行內幕交易(如果佢推斷到有內幕消息)、根據法律原因執行白名單/黑名單。公司亦可能為要合規嘅機構用戶推出有安全守則嘅商用代理。
潛在挑戰及外部因素
雖然前景正面,以下因素都有機會影響發展:
-
監管打壓:如果出現轟動意外(例如有AI代理導致大家巨額損失,定被捲入洗黑錢醜聞),監管機構或者會反應極大——例如限制自動金融軟件使用,或者要領牌先得。可以令發展減慢,甚至迫向地下/更去中心化發展。相反,如果有明確支持性監管(某啲地區樂於接納、設AI代理沙盒),進展或可加速。全球監管格局必然係關鍵因素。
-
市場環境:如果2025年加密市場大跌,大家對AI代理實驗熱情及資本都會收縮。一旦用戶撤走,邊會咁需要AI交易員。相反,牛或穩定市就有利測試同賺錢。話雖如此,有人會話熊市下搞AI代理反而更有用(幫人導航複雜局面),不過如果冇錢搵,公眾興趣都會自然冷卻。
-
公眾觀感及信任:如果頻頻爆出代理失誤或行為怪異故事,大眾自然戒心大增。信任難建立卻易失去,尤其AI本身已經有人天生唔信。社群要多展示成功例,亦要對失敗透明公開,先可維持正面口碑。
長遠藍圖:AI同區塊鏈大融合
拉返遠啲睇,AI代理出現其實係AI同區塊鏈兩大顛覆性科技結合嘅縮影。最長遠嘅願景,一方面區塊鏈為AI提供信任基層,可以紀錄自主代理做過咩,令佢哋對外可追溯;同時處理價值轉移,賦予代理經濟行動自由。而AI則為區塊鏈賦予_智能同自動化_,令去中心化系統更加高效同易用。
去到2025年尾,我哋預計會見到首次有力證明呢種結合創造咗全新事物——例如有完全由AI營運、表現超越人類組織嘅DAO,又或者有去中心化市場,AI代理用極快速度彼此交易服務,自主創造價值。雖然都仲係起步階段,但已經足夠清楚指向一個未來:自主經濟代理成為Web3日常組成部分。
總結嚟講,2025年餘下時間,很可能會見證AI代理由萌芽階段,經歷一輪 驗證大煉鋼爐。成功嘅項目同代理人,會有可能成為新加密模式嘅核心骨幹。
第一季嘅熱潮,會逐步轉化為現實影響,實踐咗「呢個真係唔止炒作——呢啲代理真係徹底改變緊加密同AI」嘅承諾。如果一切順利,到年底再寫年結報告時,AI代理可能已成為加密生態唔可或缺又理所當然嘅一部份,而唔再係一股新興潮流。

